Visualising software architecture

As a team, agree upon a set of abstractions you will use to communicate software
architecture. The "C4 model" is a hierarchical way to think about the static structures
of a software system in terms of containers, components and classes (or code):

A software system is made up of one or more containers (web applications, mobile apps,
desktop applications, databases, file systems, etc), each of which contains one or more
components, which in turn are implemented by one or more classes (or code).

Visualise this hierarchy by creating a collection of System Context, Container, Component
and (optionally) UML class diagrams. Think about these diagrams as maps of your

software, showing different levels of detail.
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A System Context diagram is a good starting point for The next step is to illustrate the high-level technology Next you can zoom in to each container further to
diagramming and documenting a software system, choices with a Container diagram. A "container" is visualise the major structural building blocks and their
allowing you to step back and see the big picture. Draw something like a web application, mobile app, desktop interactions. The Component diagram shows how a
a diagram showing your system as a box in the centre, application, database, file system, etc. Essentially, a container is made up of a number of components,
surrounded by its users and the other systems that it container is a separately deployable unit that executes what each of those components are, their
interacts with. Detail isn't important here as this is your code or stores data. The Container diagram shows the responsibilities and the technology/implementation
zoomed out view showing a big picture of the system high-level shape of the software architecture and how details. If your components don't all fit on a single
landscape. The focus should be on people (actors, responsibilities are distributed across it. It also shows diagram, create multiple versions showing different
roles, personas, etc) and software systems rather than the major technology choices and how the containers portions of the container.
technologies, protocols and other low-level details. communicate with one another.

A common set of abstractions is more important than a common notation, but do ensure
that your notation (shapes, colours, line styles, acronyms, etc) makes sense. If in doubt,
add a diagram key/legend, even when using UML.

Use the elements in your model of the static structure to create additional supplementary
diagrams in order to communicate runtime behaviour and deployment (the mapping of
containers to infrastructure).
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