Visualising software architecture

As a team, agree upon a set of abstractions you will use to communicate software
architecture. The "C4 model" is a hierarchical way to think about the static structures
of a software system in terms of containers, components and classes (or code):

A software system is made up of one or more containers (web applications, mobile apps,
desktop applications, databases, file systems, etc), each of which contains one or more
components, which in turn are implemented by one or more classes (or code).

Visualise this hierarchy by creating a collection of System Context, Container, Component
and (optionally) UML class diagrams. Think about these diagrams as maps of your

software, showing different levels of detail.
/ 7 A

News Feed Entry
Component Tweet Component
[Component: Spring Bean [Component: Spring Bean
and MongoDB] and MongoDB]

Anonymous User Aggregated User
[Person] [Person]

Aggregated User
[Person] Administration User
[Person]

Anonymous User
[Person]

Administration User Relational Database
[Person] [Container: MySQL 5.5.x]
to

Auser or business with
content that is aggregated into Asystem administration user,
the website, signed in using signed in using a Twitter ID.

their Twitter ID.

Reads from and wr
[SQL/DBC

Anybody on the web.

GitHub Component Search Component
[Component: Spring Bean [Component: Spring Bean

[Cu:lt:i‘: eepS[:aI:\:tllvA?/ 2 on and JDBC] and Apache Lucene]

Apache Tomcat 7.x]

Add people, add tribes and Provides access to GitHub Search facilities for news

Provic I Provi 3
repos. Teed entries and tweets. ovides access to blog ovides access to tweets.

entries and news.

content, events Manage user profile

grov 0S manage tribe membership Allows users to view people, tribes,
etc from the local tech, digital and tribe me p content, events, jobs, etc from the
and IT sector local tech, digital and IT sector.

Upd: ch f
Reads from and writes data to Reade £ ‘ Reads from . Updates inde . Stores blog
[SQL/JDBC Mym mulmm [Mongo DB Wire Protocol, port 27017] GitHub repos € entries using

using

Scheduled Content
Updater
[Component: Spring
Scheduled Task]

Logging Component
[Component: Spring
Bean and log4j]

techtribes.je
[Software System]

Relational Database

[Container: MySQL 5.5.x] File System NoSQL Data Store

[Container] [Container: MongoDB 2.2.x]

Stores people, tribes, tribe
membership, talks, events, jobs,
badges, GitHub repos, etc.

Stores content from RSS/Atom feeds

Stores search indexes. (blog posts) and tweets.

Provides logging facilities to
all other components.

Refreshes information from
external systems every 15
minutes.

Writes to Reads from and
90 DE ro

writes data to
[Mongo DB Wire Protocol

R(‘,\(!\Jgom and writes data to tocol. port 27017]

[SQL/JDBC, port 3306]
Twitter Connector
[Component: Spring Bean
and Twitter4j]

News Feed
Connector
[Component: Spring Bean
and ROME]

GitHub Connector
[Component: Spring Bean
and Eclipse Mylyn])

Content Updater
[Container: Java 7 Console
Application]

Gets profile information
and tweets from

Retrieves profile
information and tweets
(using the REST and
Streaming APIs).

Retrieves information about
public repos.

Updates profiles, tweets, GitHub
Gets information repos and content on a scheduled
basis.

Retrieves content from RSS

about public code and Atom feeds.

repositories from

Gets information

Gets profile information about public code Gets content using RSS
Gets profile information Gets information Gets content using RSS and tweets from renositories from and Atom feeds from
and tweets from about public code and Atom feeds from [HTTPS] F o [HTTP]
; ; [HTTPS] repostorie from THTTe) IHTTPS]
Twitter GitHub Blogs !
[Software System] [Software System] [Software System] / \ Twitter GitHub Blogs
Twitter GitHub Blogs [Software System] [Software System] [Software Systems]
[Software System] [Software System] [Software System]
* Used by all components
[System Context] techtribes.je [Containers] techtribes.je [Components] techtribes.je - Content Updater

A System Context diagram is a good starting point for The next step is to illustrate the high-level technology Next you can zoom in to each container further to
diagramming and documenting a software system, choices with a Container diagram. A "container" is visualise the major structural building blocks and their
allowing you to step back and see the big picture. Draw something like a web application, mobile app, desktop interactions. The Component diagram shows how a
a diagram showing your system as a box in the centre, application, database, file system, etc. Essentially, a container is made up of a number of components,
surrounded by its users and the other systems that it container is a separately deployable unit that executes what each of those components are, their
interacts with. Detail isn't important here as this is your code or stores data. The Container diagram shows the responsibilities and the technology/implementation
zoomed out view showing a big picture of the system high-level shape of the software architecture and how details. If your components don't all fit on a single
landscape. The focus should be on people (actors, responsibilities are distributed across it. It also shows diagram, create multiple versions showing different
roles, personas, etc) and software systems rather than the major technology choices and how the containers portions of the container.
technologies, protocols and other low-level details. communicate with one another.

A common set of abstractions is more important than a common notation, but do ensure
that your notation (shapes, colours, line styles, acronyms, etc) makes sense. If in doubt,
add a diagram key/legend, even when using UML.

Use the elements in your model of the static structure to create additional supplementary
diagrams in order to communicate runtime behaviour and deployment (the mapping of
containers to infrastructure).

Software Software
Architecture Architecture o
“Software Architecture for Developers” for for St r u Ct u r I Z r
A developer-friendly, praCtical and pragmatic DeveIOpers Developers Visualise, document and explore your software architecture

guide to lightweight software architecture,

technical leadership and the balance with agility. A collection of tooling to help you visualise,

Technical leadership and Visualise, document and explore document and exp|ore your software architecture.

the balance with agility your software architecture

Simon Brown Simon Brown

@simonbrown




