
Use the elements in your model of the static structure to create additional supplementary 
diagrams in order to communicate runtime behaviour and deployment (the mapping of 
containers to infrastructure).

Visualising software architecture

1

2 Visualise this hierarchy by creating a collection of System Context, Container, Component 
and (optionally) UML class diagrams. Think about these diagrams as maps of your 
software, showing different levels of detail.

A common set of abstractions is more important than a common notation, but do ensure 
that your notation (shapes, colours, line styles, acronyms, etc) makes sense. If in doubt, 
add a diagram key/legend, even when using UML.

As a team, agree upon a set of abstractions you will use to communicate software 
architecture. The "C4 model" is a hierarchical way to think about the static structures 
of a software system in terms of containers, components and classes (or code):

A software system is made up of one or more containers (web applications, mobile apps, 
desktop applications, databases, file systems, etc), each of which contains one or more 
components, which in turn are implemented by one or more classes (or code).

3

Level 1: System Context 
A System Context diagram is a good starting point for 
diagramming and documenting a software system, 
allowing you to step back and see the big picture. Draw 
a diagram showing your system as a box in the centre, 
surrounded by its users and the other systems that it 
interacts with. Detail isn't important here as this is your 
zoomed out view showing a big picture of the system 
landscape. The focus should be on people (actors, 
roles, personas, etc) and software systems rather than 
technologies, protocols and other low-level details.

Level 3: Components 
Next you can zoom in to each container further to 
visualise the major structural building blocks and their 
interactions. The Component diagram shows how a 
container is made up of a number of components, 
what each of those components are, their 
responsibilities and the technology/implementation 
details. If your components don’t all fit on a single 
diagram, create multiple versions showing different 
portions of the container.

Level 2: Containers 
The next step is to illustrate the high-level technology 
choices with a Container diagram. A "container" is 
something like a web application, mobile app, desktop 
application, database, file system, etc. Essentially, a 
container is a separately deployable unit that executes 
code or stores data. The Container diagram shows the 
high-level shape of the software architecture and how 
responsibilities are distributed across it. It also shows 
the major technology choices and how the containers 
communicate with one another.

4
“Software Architecture for Developers” 
A developer-friendly, practical and pragmatic 
guide to lightweight software architecture, 
technical leadership and the balance with agility.

@simonbrown

A collection of tooling to help you visualise, 
document and explore your software architecture.


