
@simonbrown

Software Architecture
for Developers

Five things every developer should
know about software architecture

1. Software architecture isn't
about big design up front

Historically there’s been
a tendency towards
big design up front

“Waterfall”

“ ”I believe in this concept, but the
implementation described above

is risky and invites failure.
Managing the development of large software systems

Dr Winston W. Royce

“ ”Responding to change
over

following a plan

Moving fast, embracing change,
delivering value early, getting feedback

vs
Understanding everything up front,

defining a blueprint for the team to “follow”

vs
Software

Architecture
Document

Big design
up front

No design
up front

“ ”Big design up front is dumb.
Doing no design up front

is even dumber.
Dave Thomas

How much up front design
should you do?

0% 100%

“ ”just enough

It’s not about creating a
perfect end-state or

complete architecture

You need a
starting point

Evolutionary Design
Beginning With A Primitive Whole

If you don’t engage in the problem, you end up with
a very simplified and superficial view of the solution

1. Is that what we’re going to build?

2. Is it going to work?

“ ”
Architecture represents the

significant decisions, where significance
is measured by cost of change.

Grady Booch

Curly braces on the same or next line
Whitespace vs tabs

Programming language
Monolith, microservices or hybrid approachArchitecture

Design

Implementation

Identify and mitigate
your highest priority risks

“ ”
Base your architecture on
requirements, travel light

and prove your architecture
with concrete experiments.

Agile Architecture: Strategies for Scaling Agile Development
Scott Ambler

Concrete experiment
Proof of concept, prototype, spike, tracer, vertical slice,
walking skeleton, executable reference architecture, …

Just enough up front design to create
firm and sufficient foundations

Thinking about
software architecture lets you

stack the odds of success
in your favour

2. Every software team needs
to consider software

architecture

What happens if a software
development team doesn’t
think about architecture?

Chaos
Big ball of mud, spaghetti code, inconsistent
approaches to solving the same problems,
quality attributes are ignored, deployment

problems, maintenance issues, etc

Every team needs
technical leadership

3. The software architecture
role is about coding, coaching

and collaboration

Software development
is not a relay sport

Software
Architecture
Document

AaaS
Architecture as a Service

Continuous
technical

leadership

Different types of teams need
different leadership styles

Pair architecting

Soft skills
(leadership, communication, presentation, influencing,

negotiation, collaboration, coaching and mentoring,
motivation, facilitation, political, etc)

Good software architects
are typically

good software developers

The people designing software must
understand technology …

all decisions involve trade-offs

1. Is that what we’re going to build?

2. Is it going to work?

Should software architects
write code?

Production code, prototypes,
frameworks, foundations, code

reviews, experimenting, etc

Don’t code all of the time!

Software architects
should be

master builders

Experience is important …
software architecture is not a rank!

Progress Toward an Engineering Discipline of Software
Mary Shaw

The software architecture role
is multi-faceted

(technical depth, technical breadth, soft skills)

4. You don't need to use UML

Do you use UML?

In my experience, optimistically,

1 out of 10 people use UML

1. Is that what we’re going to build?

2. Is it going to work?

A common set of abstractions
is more important

than a common notation

A software system is made up of one or more containers,
each of which contains one or more components,

which in turn are implemented by one or more classes (or code).

Class Class Class

Component Component Component

Container
(e.g. client-side web app, server-side web app, console application,

mobile app, microservice, database schema, file system, etc)

Container
(e.g. client-side web app, server-side web app, console application,

mobile app, microservice, database schema, file system, etc)

Container
(e.g. client-side web app, server-side web app, console application,

mobile app, microservice, database schema, file system, etc)

Software System

C4
c4model.com

Diagrams are maps
that help software developers navigate a large and/or complex codebase

Software Guidebook
(maps, points of interest, sights, itineraries,
history, culture, practical information, etc)

“ ”What tools do you
recommend?

public static void main(String[] args) throws Exception {
 Workspace workspace = new Workspace("Getting Started", "This is a model of my software system.");
 Model model = workspace.getModel();

 Person user = model.addPerson("User", "A user of my software system.");
 SoftwareSystem softwareSystem = model.addSoftwareSystem("Software System", "My software system.");
 user.uses(softwareSystem, "Uses");

 ViewSet views = workspace.getViews();
 SystemContextView contextView = views.createSystemContextView(softwareSystem, "SystemContext", "An example of a System Context diagram.");
 contextView.addAllSoftwareSystems();
 contextView.addAllPeople();

 Styles styles = views.getConfiguration().getStyles();
 styles.addElementStyle(Tags.SOFTWARE_SYSTEM).background("#1168bd").color("#ffffff");
 styles.addElementStyle(Tags.PERSON).background("#08427b").color("#ffffff").shape(Shape.Person);
}

static void Main()
{
 Workspace workspace = new Workspace("Getting Started", "This is a model of my software system.");
 Model model = workspace.Model;

 Person user = model.AddPerson("User", "A user of my software system.");
 SoftwareSystem softwareSystem = model.AddSoftwareSystem("Software System", "My software system.");
 user.Uses(softwareSystem, "Uses");

 ViewSet viewSet = workspace.Views;
 SystemContextView contextView = viewSet.CreateSystemContextView(softwareSystem, "SystemContext", "An example of a System Context diagram.");
 contextView.AddAllSoftwareSystems();
 contextView.AddAllPeople();

 Styles styles = viewSet.Configuration.Styles;
 styles.Add(new ElementStyle(Tags.SoftwareSystem) { Background = "#1168bd", Color = "#ffffff" });
 styles.Add(new ElementStyle(Tags.Person) { Background = "#08427b", Color = "#ffffff", Shape = Shape.Person });
}

For more information about
software architecture

diagrams and documentation…

5. A good software
architecture enables agility

Agile is about moving fast,
embracing change, releasing often,

getting feedback, …

Agile is about a mindset of
continuous improvement

A good architecture
enables agility

Monolithic
big ball of mud

Modular
monolith

Microservices

Distributed
big ball of mud

Number of deployment units

M
od

ul
ar

ity

Agility is a
quality attribute

A good architecture rarely
happens through

architecture-indifferent design

Five things every developer should
know about software architecture

1. Software architecture isn't about big design up front
2. Every software team needs to consider software architecture

3. The software architecture role is about coding, coaching and collaboration
4. You don't need to use UML

5. A good software architecture enables agility

simon.brown@codingthearchitecture.com
@simonbrown

