
Simon Brown
@simonbrown

The Art of Visualising
Software Architecture

“ ”
…the architecture

diagrams don’t
match the code

Jersey

Jersey

Jersey

I help software teams understand

software architecture,

technical leadership and

the balance with agility

Software architecture
needs to be more

accessible

I code too
⇧ ; - ⇧ 0

The problem

The Shopping List

Boxes & No Lines

The Functional View

Stormtroopers

The Airline Route Map

Generically True

The Logical View

Homeless Old C# Object (HOCO)

Choose your own adventure

Should have used a whiteboard!

Eh?

The diagram
isn’t self-evident,
but we’ll explain it

Team 1

Team 1

Team 2

Team 2

What’s been
challenging about

the exercise?

Who here uses UML

on a regular basis?

1 out of 10 people use UML
(in my experience)

I do use UML
(activity, class, sequence, collaboration, state)

In my experience,
software teams
aren’t able to

effectively
visualise the

software
architecture

of their systems

We can visualise our process...

...but not our
software!

Moving fast in the
same direction

requires good
communication

Notation

Some notation tips…

Titles
Short and meaningful, numbered if

diagram order is important

Lines
Favour unidirectional arrows, add

descriptive text to provide
additional information

Layout
Sticky notes and index cards make a

great substitute for drawn boxes,
especially early on

Labels
Be wary of using acronyms, especially
those related to the business/domain

that you work in

Colour
Ensure that colour coding

is made explicit; watch out for
colour-blindness and
black/white printers

Orientation
Most important thing in the middle;

be consistent across diagrams

Shapes
Don’t assume that people will

understand what different shapes
are being used for

Keys
Explain shapes, lines, colours,

borders, acronyms, etc

Responsibilities
Adding responsibilities to boxes can
provide a nice “at a glance” view

(Miller’s Law; 7±2)

Content

It’s usually difficult to
show the entire design on

a single diagram

Different views of
the design can be used to
manage complexity and

highlight different
aspects of the solution

Software architecture deals with
abstraction, with decomposition and

composition, with style and esthetics.

To describe a software
architecture, we use a

model composed of multiple
views or perspectives.

Architectural Blueprints—The “4+1” View Model of Software Architecture
by Philippe Kruchten

Viewpoints
and

perspectives

Does everybody on the team
understand the naming?

Development vs Physical
Process vs Functional
Conceptual vs Logical

Development vs Implementation
Physical vs Implementation
Physical vs Deployment

Why is there a

separation
between the logical and

development views?

“the model-code gap”

Do the diagrams reflect the

code?

As an industry, we lack a
common vocabulary

with which to think about, describe
and communicate software architecture

Floor
plans

Circuit
diagrams
(pictorial or schematic)

http://agilemodeling.com/artifacts/componentDiagram.htm

Component?

Relational
Database

Web Application

LoggingComponent

Ubiquitous
language

A common set
of abstractions

is more important than
a common notation

A software system is made up of one or more containers,

each of which contains one or more components,

which in turn are implemented by one or more classes.

Class Class Class

Component Component Component

Container
(e.g. web application, application server, standalone application,

browser, database, file system, etc)

Container
(e.g. web application, application server, standalone application,

browser, database, file system, etc)

Container
, application server, standalone application,

browser, database, file system, etc)

Software System

Static
model

(software systems,
containers, components

and classes)

Runtime and
behaviour

(sequence and collaboration
diagrams of elements in the

static model)

Deployment
(mapping of containers

to infrastructure)

Business process
and workflow

Infrastructure
(physical, virtual,

containerised hardware;
firewalls, routers, etc)

Data
(entity relationship

diagrams)
etc…

The C4 model

Classes (or Code)
Component implementation details

System Context
The system plus users and system dependencies

Containers
The overall shape of the architecture and technology choices

Components
Components and their interactions within a container

techtribes.je

Component
diagram

(level 3)

Container
diagram

(level 2)

Context
diagram

(level 1)

Class
diagram

(level 4)

Component
diagram

(level 3)

Container
diagram

(level 2)

Context
diagram

(level 1)

Class
diagram

(level 4)

Component
diagram

(level 3)

Container
diagram

(level 2)

Context
diagram

(level 1)

Class
diagram

(level 4)

Component
diagram

(level 3)

Container
diagram

(level 2)

Context
diagram

(level 1)

Class
diagram

(level 4)

Diagrams are maps
that help a team navigate a complex codebase

Think about the

target
audience

Business Operations Developers

A simple notation
(whiteboard and sticky note friendly,
supplemented with colour coding)

techtribes.je
[Software System]

techtribes.je is the only way to keep up to
date with the IT, tech and digital sector in

Jersey and Guernsey, Channel Islands.

Anonymous User
[Person]

Anybody on the web.

Twitter Connector
[Component: Spring Bean + Twitter4j]

Retrieves profile information and tweets
(using the REST and Streaming APIs).

Web Application
[Container: Apache Tomcat 7.x]

Allows users to view people, tribes, content,
events, jobs, etc from the local tech, digital

and IT sector.

Shapes and colour can add an additional layer of information

C4++
Enterprise context

User interface mockups and wireframes
Domain model

Sequence and collaboration diagrams
Business process and workflow models

Infrastructure model
Deployment model

...

4+1 architectural view model

Philippe Kruchten

Software Systems Architecture
Working with Stakeholders Using

Viewpoints and Perspectives (2nd Edition)

Nick Rozanski and Eoin Woods

C4 is not a
design process

Up front design
vs

retrospectively
drawing diagrams

Tooling

Any general purpose diagramming tool can
be used to create software architecture diagrams

Do building architects
use Microsoft Visio?

Sketches get out of date,
so why not

auto-generate
the diagrams?

Spring PetClinic
https://github.com/spring-projects/spring-petclinic/

3-profiles-
jdbc-

default-(JPA)-
Spring-Data-JPA-

Repository

Service @Cacheable-
@TransacGonal-

Controller
Bean-ValidaGon-

Spring-@MVC-annotaGons-

Views

Bootstrap-(CSS)-

JSP-with--
custom-tags- Thymeleaf-

Dandelion-webjars-

| |

&& && +

https://speakerdeck.com/michaelisvy/
spring-petclinic-sample-application

An auto-generated UML class diagram

Diagramming tools see

code
rather than components

What is a

“component”?

What are the
architecturally

significant
elements?

A UML class diagram showing
architecturally significant elements

The code is the

embodiment
of the architecture

Is the architecture
in the code?

Context

Software
Systems

Integration points, APIs,
known libraries, credentials
for inbound consumers, etc.

Containers
IDE projects/modules, build

output (code and
infrastructure), etc.

People
Security groups/roles in
configuration files, etc.

Components
Extractable from the code if
an architecturally-evident

coding style has been
adopted.

Containers

Software
Systems

Integration points, APIs,
known libraries, credentials
for inbound consumers, etc.

Containers
IDE projects/modules, build

output (code and
infrastructure), etc.

People
Security groups/roles in
configuration files, etc.

Components
Extractable from the code if
an architecturally-evident

coding style has been
adopted.

Components

Software
Systems

Integration points, APIs,
known libraries, credentials
for inbound consumers, etc.

Containers
IDE projects/modules, build

output (code and
infrastructure), etc.

People
Security groups/roles in
configuration files, etc.

Components
Extractable from the code if
an architecturally-evident

coding style has been
adopted.

“architecturally-evident
coding style”

Architecturally-evident
coding styles include:

Annotations/attributes (@Component, [Component], etc)

Naming conventions (*Service)

Namespacing/packaging
(com.mycompany.system.components.*)

Maven modules, OSGi modules, Java 9 and
Jigsaw, JavaScript module patterns,

ECMAScript 6 modules, microservices, etc

Extract as much of the software
architecture from the code as possible,

and supplement
where necessary

Architecture
description
languages

Create an architecture
description language

using code

Visualise, document and explore
your software architecture

Visualise, document and explore
your software architecture

Visualise, document and explore
your software architecture

Structurizr
for Java

Structurizr
for .NET

Spring PetClinic
https://github.com/spring-projects/spring-petclinic/

3-profiles-
jdbc-

default-(JPA)-
Spring-Data-JPA-

Repository

Service @Cacheable-
@TransacGonal-

Controller
Bean-ValidaGon-

Spring-@MVC-annotaGons-

Views

Bootstrap-(CSS)-

JSP-with--
custom-tags- Thymeleaf-

Dandelion-webjars-

| |

&& && +

https://speakerdeck.com/michaelisvy/
spring-petclinic-sample-application

public static void main(String[] args) throws Exception {
 Workspace workspace = new Workspace(
 "Spring PetClinic",
 "This is a C4 representation of the Spring PetClinic sample app
 (https://github.com/spring-projects/spring-petclinic/)”);

 Model model = workspace.getModel();

}

// software systems and people
SoftwareSystem springPetClinic = model.addSoftwareSystem(
 "Spring PetClinic",
 "Allows employees to view and manage information regarding the
 veterinarians, the clients, and their pets.”);

Person clinicEmployee = model.addPerson(
 "Clinic Employee", "An employee of the clinic");

clinicEmployee.uses(springPetClinic, “Uses");

// containers
Container webApplication = springPetClinic.addContainer(
 "Web Application",
 "Allows employees to view and manage information regarding the
 veterinarians, the clients, and their pets.",
 "Apache Tomcat 7.x”);

Container relationalDatabase = springPetClinic.addContainer(
 "Relational Database",
 "Stores information regarding the veterinarians, the clients,
 and their pets.”, "HSQLDB");

clinicEmployee.uses(webApplication,
 "Uses", “HTTP");

webApplication.uses(relationalDatabase,
 "Reads from and writes to", "JDBC, port 9001”);

“Component Finder”
with pluggable strategies,

implemented using
reflection & static analysis

(e.g. Java Annotations, .NET Attributes,
type name ends with “Controller”,

type extends class X, type implements interface Y,
supplement model with type-level comments

from source code, etc)

// components
ComponentFinder componentFinder = new ComponentFinder(
 webApplication,
 "org.springframework.samples.petclinic",
 new SpringComponentFinderStrategy(
 new ReferencedTypesSupportingTypesStrategy()
),
 new SourceCodeComponentFinderStrategy(
 new File(sourceRoot, "/src/main/java/"), 150));

componentFinder.findComponents();

// connect components with other model elements
webApplication.getComponents().stream()
 .filter(c -> c.getTechnology().equals(SpringComponentFinderStrategy.SPRING_MVC_CONTROLLER))
 .forEach(c -> clinicEmployee.uses(c, "Uses", "HTTP"));

webApplication.getComponents().stream()
 .filter(c -> c.getTechnology().equals(SpringComponentFinderStrategy.SPRING_REPOSITORY))
 .forEach(c -> c.uses(relationalDatabase, "Reads from and writes to", "JDBC"));

// system context, container and component views
ViewSet viewSet = workspace.getViews();

SystemContextView contextView = viewSet.createContextView(
 springPetClinic, “context",
 "Context view for Spring PetClinic");
contextView.addAllSoftwareSystems();
contextView.addAllPeople();

ContainerView containerView = viewSet.createContainerView(
 springPetClinic, “containers",
 "Container view for Spring PetClinic");
containerView.addAllPeople();
containerView.addAllSoftwareSystems();
containerView.addAllContainers();

ComponentView componentView = viewSet.createComponentView(
 webApplication, “components",
 "The Components diagram for the Spring PetClinic web application.");
componentView.addAllComponents();
componentView.addAllPeople();
componentView.add(relationalDatabase);

// upload the software architecture model to structurizr.com
StructurizrClient client = new StructurizrClient("key", "secret");
client.mergeWorkspace(1234, workspace);

{
 "id" : 0,
 "name" : "Spring PetClinic",
 "description" : "This is a C4 representation of the Spring PetClinic sample app (https://github.com/spring-projects/spring-petclinic/)",
 "model" : {
 "people" : [{
 "tags" : "Element,Person",
 "id" : "2",
 "name" : "Clinic Employee",
 "description" : "An employee of the clinic",
 "relationships" : [{
 "tags" : "Relationship,Synchronous",
 "id" : "3",
 "sourceId" : "2",
 "destinationId" : "1",
 "description" : "Uses",
 "interactionStyle" : "Synchronous"
 }, {
 "tags" : "Relationship,Synchronous",
 "id" : "6",
 "sourceId" : "2",
 "destinationId" : "4",
 "description" : "Uses",
 "technology" : "HTTP",
 "interactionStyle" : "Synchronous"
 }, {
 "tags" : "Relationship,Synchronous",
 "id" : "28",
 "sourceId" : "2",
 "destinationId" : "8",
 "description" : "Uses",
 "technology" : "HTTP",
 "interactionStyle" : "Synchronous"
 }, {
 "tags" : "Relationship,Synchronous",
 "id" : "29",
 "sourceId" : "2",
 "destinationId" : "9",
 "description" : "Uses",
 "technology" : "HTTP",
 "interactionStyle" : "Synchronous"
 }, {
 "tags" : "Relationship,Synchronous",
 "id" : "30",
 "sourceId" : "2",
 "destinationId" : "10",
 "description" : "Uses",

Navigate from diagram to source code

Diagrams are maps

Creating the model as code provides opportunities…

Once you have a model,
you can export that

model and visualise it
however you like…

Build pipeline
integration keeps

software architecture
models up-to-date

Virtual Panel on Software Architecture Documentation (2009)
http://www.infoq.com/articles/virtual-panel-arch-documentation

Visualising software architecture is still very much an art,
but it’s 2016 and time to stop using tools like Microsoft Visio!

From static diagrams to
maps of the code

Do you have a

ubiquitous
language

to describe your software?

simon.brown@codingthearchitecture.com

@simonbrown on Twitter

