
Simon Brown

Agile software architecture

sketches

I help software teams understand

software architecture,

technical leadership and

the balance with agility
(I code too)

Training Book Speaking

simon.brown@codingthearchitecture.com

@simonbrown on Twitter

Jersey, Channel Islands

What is architecture?

Infrastructure
Services

Foundations

Requirements

As a noun...

Structure
The definition of

something in terms of
its components and

interactions

As a verb...

Vision
The process of architecting,

making design decisions,
providing guidance, etc

Grady Booch

Architecture vs design

Architecture represents the

significant decisions,
where significance is measured

by cost of change.

Can you refactor
it in an aftern

oon?

Design a software
solution for the

financial risk system

Do some design, choose some technologies,
draw some boxes & lines, etc...

What’s the deliverable?

One or more large diagrams

on flip chart paper

to describe your solution

What’s been
challenging about

the exercise?

Review the diagrams

3+ things we like

about the diagrams
3+ things we think would

improve the diagrams

People expect to present their designs and therefore
information is still

stuck in their heads

10111010101
10100110111
10111010100
10101011011

UML tool?

Whiteboard or
flip chart?

You don’t need a UML

tool to do arch
itecture

but agree on notat
ion

Collaborative design
(e.g. pair architecting)

NoUML
diagrams?

We can visualise our process...

...but not our
software!

Shared vision of

WTF?!

Are these

effective
sketches?

The Shopping List

Boxes & No Lines

The Functional View

The Airline Route Map

Generically True

The Technology Deferral

Missing Details

Assumptions are the mother of all ...

Homeless Old C# Object (HOCO)

The Adventure Book

Should have used a whiteboard!

Eh?

Would you

code
it that way?

This is why

software archite
cts

must be master-builders

It’s usually difficult to
show the entire design on

a single diagram

Different views of
the design can be used to
manage complexity and

highlight different
aspects of the solution

Software System
Containers

Components
Classes

Agree on a simple abstraction that the
whole team can use to communicate

System

Container

Container

Container

Component

Component

Component

Class

Class Class

Class

1. Context 2. Containers 3. Components

Thinking inside the box

... and, optionally,
4. ClassesC4

Context
Containers
Components
Classes

This only covers
the static structure
(runtime, infrastructure,

deployment, etc are also important)

This isn’t about
creating a standard

It’s about providing you

some organisational ideas

Context

Banking System

Single point of truth for all
customer data.
Contains all core banking logic.

New Systems

Existing Systems

Internet Banking System

Allows customers to interact

securely via the web.

E-mail System

Sending e-mails to customers?

Monitoring System
Receive alerts and show them on a dashboard?

What
are we

building?

Who
is using it?

Colour coding, annotations
on the lines, system
responsibilities, ...

Context
• What are we building?
• Who is using it? (users, actors, roles, personas, etc)
• How does it fit into the existing IT environment?

What are we building?

Who is using it?
(users, actors, roles, personas, e

tc)

How does it fit into the
existing IT environment?

Web server
Allows customers to interact
securely via the web.
Allow call centre staff to
undertake administrative actions.

External web server
Allows customers to interact
securely via the web.

Containers
Web server, standalone application,

Windows service, application server,

plugin, etc

Database
Stores customer information
related to Internet Banking.
Retains audit logs.
Stores managed content.

Application server
Orchestrates user interaction
across banking system.

Banking system

Single point of truth for all

customer data.

Contains all core ban
king logic.

IIS

Internal web server
Allows call centre staff to undertake administrative actions.

IIS

IIS

UNIX

SQL Server

XML/TCP protocol
SQL

Requests data from

Uses Windows Communication Foundation

Requests data from

Uses Windows Communication Foundation

What

containers
is the system
made up of?

How do they

communicate?

• What are the high-level technology decisions?
• How do containers communicate with one another?
• As a developer, where do I need to write code?Containers

Containers
• What are the high-level technology decisions?
• How do containers communicate with one another?
• As a developer, where do I need to write code?

What are the high-level
technology decisions?

How do containers
communicate with

one another?

As a developer, where do I
need to write code?

Banking Service

Get accounts.
Get statement.
Get/create/edit/delete
recipients.
Make payments.

Components - Application server

Authentication Service
Login.
Authorise transaction.
Logout.
Reset credentials.
Lock account.

Banking System Facade

Single point of truth for all
customer data.
Contains all core banking logic.

Audit Service
Write audit log entry.
Get audit log entries for
customer.

DatabaseBanking System

Web server

Business Services

Data Services

WCF service

WCF service

C#

C#Abstrac
tion al

lows you

to manage c
omplexity

Components
• What components/services is the system made up of?
• Is it clear how the system works at a high-level?
• Do all components have a home (a container)?

BankingSystemFacade

Get accounts.
Get statement.
Get/create/edit/delete
recipients.
Make payments.

Classes - Banking System Facade

Banking system

<<abstract>>
Transaction

Execute transaction.
Audit transaction.

<<abstract>>
Response

Parse XML response into domain
object(s).

<<abstract>>
Request

Convert request to XML.

BankingSystemInterface

Initiate connec
tion.

Execute transaction
.

Close transact
ion.

Creates

Is made up ofUses

Optional: depends on how
much guidance and control

you need to introduce

Some tips for

effective sketches

Titles
Short and meaningful, numbered if

diagram order is important

Lines
Make line style and arrows explicit,
add annotations to lines to provide

additional information

Layout
Sticky notes and index cards make a

great substitute for drawn boxes,
especially early on

Labels
Be wary of using acronyms

Colour
Ensure that colour coding

is made explicit

Orientation
Users at the top and database at the
bottom? Or perhaps “upside-down”?

Shapes
Don’t assume that people will

understand what different shapes
are being used for

Borders
Use borders to provide emphasis

or group related items,
but ensure people know why

Keys
Explain shapes, lines, colours,

borders, acronyms, etc

Responsibilities
Adding responsibilities to boxes can
provide a nice “at a glance” view

Use sticky notes or

index cards instead

of drawing boxes

Think about the

target
audience

Non-technical Semi-technical Very technical

youDo whatever works for

Sketches
in context

Chaos!
Does the team understand what they are building and how they are building it?

Chaos!
Does the team understand what they are building and how they are building it?

No defined structure,
inconsistent approaches,

big ball of mud,
spaghetti code, ...

STOP
Slow, insecure, unstable, unmaintainable,

hard to deploy, hard to change,
over time, over budget, ...

Chaos!
Does the team understand what they are building and how they are building it?

No defined structure,
inconsistent approaches,

big ball of mud,
spaghetti code, ...

STOP
Slow, insecure, unstable, unmaintainable,

hard to deploy, hard to change,
over time, over budget, ...

Let’s agree
on some things Let’s make the implicit,

explicit

Put some boundaries
and guidelines in place

Moving fast (agility) requires

good
communication

Shared vision of

WTF?!

Every software developer
should know how to sketch

✓
It allows you to visualise

a solution and
communicate it quickly

It paves the way for

collaborative d
esign and

collective cod
e ownership

Sketches are not

art or

comprehensive
models

✖

Pictures
are the simplest form

of documentation

Leave your sketches
on the wall...

A point of reference for
technical discussions

(something to point at)

A map to help the

team navigate a

complex codebase

Plus sketches are also a starting point for...

Just enough up front design to

understand the
structure

of the software and

create a
shared vision

for the team

Risk-storming

A collaborative and visual technique for identifying risk

/// <summary>
/// Represents the behaviour behind the ...
/// </summary>
public class SomeWizard : AbstractWizard
{
 private DomainObject _object;
 private WizardPage _page;
 private WizardController _controller;

 public SomeWizard()
 {
 }

 ...

}

“just enough”
software architecture

The role

The process

Understand how the
significant elements

fit together
Identify and mitigate

the key risks

Provide firm foundations and a visionto move forward

Software
Architecture
Document

Thanks
and happy sketching!

simon.brown@codingthearchitecture.com

@simonbrown on Twitter

