
@simonbrown

The art of visualising
software architecture

Enough detail to
start exploring

Very detailed and precise
(terrain, buildings, etc)

“ ”This doesn’t make sense,
but we’ll explain it.

1 1 1 2 2 2

Did you find this exercise challenging?

I’ve run this workshop
in 25+ countries

for 10,000+ people

Software architects
struggle to communicate

software architecture

Do you use UML?

In my experience, optimistically,

1 out of 10 people use UML

I do use UML, but not for
software architecture

Moving fast in the same direction
as a team requires

good communication

Think about notation

Titles
Short and meaningful, numbered if

diagram order is important

Lines
Favour unidirectional arrows, add descriptive

text to provide additional information

Layout
Sticky notes and index cards make a great

substitute for drawn boxes, especially early on

Labels
Be wary of using acronyms, especially
those related to the business/domain

that you work in

Colour
Ensure that colour coding is made explicit;

watch out for colour-blindness
and black/white printers

Orientation
Most important thing in the middle;

be consistent across diagrams

Shapes
Don’t assume that people will understand
what different shapes are being used for

Keys
Explain shapes, lines, colours, borders,

acronyms, etc

Responsibilities
Adding responsibilities to boxes can

provide a nice “at a glance” view
(Miller’s Law; 7±2)

“ ”
To describe a software architecture,

we use a model composed of
multiple views or perspectives.

Architectural Blueprints - The “4+1” View Model of Software Architecture
Philippe Kruchten

Why is there a separation
between the logical and

development views?

“ ”Our architecture diagrams
don’t match the code.

“model-code gap”

We lack a common vocabulary
to describe software architecture

Software System

Web
Application

Logging
Component

Relational
Database

Ubiquitous
language

A common set of abstractions
is more important

than a common notation

A software system is made up of one or more containers,
each of which contains one or more components,

which in turn are implemented by one or more classes (or code).

Class Class Class

Component Component Component

Container
(e.g. client-side web app, server-side web app, console application,

mobile app, microservice, database schema, file system, etc)

Container
(e.g. client-side web app, server-side web app, console application,

mobile app, microservice, database schema, file system, etc)

Container
(e.g. client-side web app, server-side web app, console application,

mobile app, microservice, database schema, file system, etc)

Software System

C4

4. Classes (or Code)
Component implementation details.

1. System Context
The system plus users and system dependencies.

2. Containers
The overall shape of the architecture and technology choices.

3. Components
Logical components and their interactions within a container.

Overview first

Zoom & filter

Details on demand

techtribes.je
A simple content aggregator for

the local tech and digital industry

1. System Context
diagram

2. Container
diagram

3. Component
diagram

4. Class
diagram

1. System Context
diagram

2. Container
diagram

3. Component
diagram

4. Class
diagram

1. System Context
diagram

2. Container
diagram

3. Component
diagram

4. Class
diagram

1. System Context
diagram

2. Container
diagram

3. Component
diagram

4. Class
diagram

Diagrams are maps
that help software developers navigate a large and/or complex codebase

A model of the
static structure
forms the basis
for other views

Static
model

(software systems,
containers, components

and classes)

Static
model

(software systems,
containers, components

and classes)

Runtime and
behaviour

(sequence and collaboration
diagrams of elements in the

static model)

Deployment
(mapping of containers

to infrastructure)

Business
process and
workflow

Infrastructure
(physical, virtual,

containerised hardware;
firewalls, routers, etc)

Data
(entity relationship

diagrams)
etc…

“ ”What tools do you
recommend?

Do structural engineers and building architects
use general purpose drawing tools?

Reverse-engineer
code to diagrams?

Spring PetClinic
A sample application that illustrates how to build Java web applications using the Spring MVC framework

https://github.com/spring-projects/spring-petclinic/

3-profiles-
jdbc-

default-(JPA)-
Spring-Data-JPA-

Repository

Service @Cacheable-
@TransacGonal-

Controller
Bean-ValidaGon-

Spring-@MVC-annotaGons-

Views

Bootstrap-(CSS)-

JSP-with--
custom-tags- Thymeleaf-

Dandelion-webjars-

| |

&& && +

https://speakerdeck.com/michaelisvy/spring-petclinic-sample-application

Most tools see code,
not components

Information about
software architecture

doesn’t exist in the code

“architecturally-evident coding style”

Examples of architecturally-evident
coding styles

Annotations/attributes (@Component, [Component], etc)
Naming conventions (*Controller, *Service, etc)

Namespacing/packaging (com.mycompany.system.components.*)
Maven & Gradle modules, OSGi & Java 9 modules

JavaScript module patterns, ECMAScript 6 modules,
microservices, etc

Executable architecture
description language

Structurizr for Java and .NET

public static void main(String[] args) throws Exception {
 Workspace workspace = new Workspace(
 "Spring PetClinic",
 "This is a C4 representation of the Spring PetClinic sample app
 (https://github.com/spring-projects/spring-petclinic/)");

 Model model = workspace.getModel();

}

// software systems and people
SoftwareSystem springPetClinic = model.addSoftwareSystem(
 "Spring PetClinic",
 "Allows employees to view and manage information regarding the
 veterinarians, the clients, and their pets.");

Person clinicEmployee = model.addPerson(
 "Clinic Employee", "An employee of the clinic");

clinicEmployee.uses(springPetClinic, "Uses");

// containers
Container webApplication = springPetClinic.addContainer(
 "Web Application",
 "Allows employees to view and manage information regarding the
 veterinarians, the clients, and their pets.",
 "Apache Tomcat 7.x");

Container relationalDatabase = springPetClinic.addContainer(
 "Relational Database",
 "Stores information regarding the veterinarians, the clients,
 and their pets.", "HSQLDB");

clinicEmployee.uses(webApplication,
 "Uses", “HTTP");

webApplication.uses(relationalDatabase,
 "Reads from and writes to", "JDBC, port 9001");

// components
ComponentFinder componentFinder = new ComponentFinder(
 webApplication,
 "org.springframework.samples.petclinic",
 new SpringComponentFinderStrategy(
 new ReferencedTypesSupportingTypesStrategy()
),
 new SourceCodeComponentFinderStrategy(
 new File(sourceRoot, "/src/main/java/"), 150));

componentFinder.findComponents();

// connect components with other model elements
webApplication.getComponents().stream()
 .filter(c -> c.getTechnology().equals(SpringComponentFinderStrategy.SPRING_MVC_CONTROLLER))
 .forEach(c -> clinicEmployee.uses(c, "Uses", "HTTP"));

webApplication.getComponents().stream()
 .filter(c -> c.getTechnology().equals(SpringComponentFinderStrategy.SPRING_REPOSITORY))
 .forEach(c -> c.uses(relationalDatabase, "Reads from and writes to", "JDBC"));

// system context, container and component views
ViewSet viewSet = workspace.getViews();

SystemContextView contextView = viewSet.createContextView(
 springPetClinic, "context", "Context view for Spring PetClinic");
contextView.addAllSoftwareSystems();
contextView.addAllPeople();

ContainerView containerView = viewSet.createContainerView(
 springPetClinic, "containers", "Container view for Spring PetClinic");
containerView.addAllPeople();
containerView.addAllSoftwareSystems();
containerView.addAllContainers();

ComponentView componentView = viewSet.createComponentView(
 webApplication, "components", "Component view for the Spring PetClinic webapp.");
componentView.addAllComponents();
componentView.addAllPeople();
componentView.add(relationalDatabase);

// upload the software architecture model to structurizr.com
StructurizrClient client = new StructurizrClient("key", "secret");
client.mergeWorkspace(1234, workspace);
{
 "id" : 0,
 "name" : "Spring PetClinic",
 "description" : "This is a C4 representation of the Spring PetClinic sample app (https://github.com/spring-projects/spring-petclinic/)",
 "model" : {
 "people" : [{
 "tags" : "Element,Person",
 "id" : "2",
 "name" : "Clinic Employee",
 "description" : "An employee of the clinic",
 "relationships" : [{
 "tags" : "Relationship,Synchronous",
 "id" : "3",
 "sourceId" : "2",
 "destinationId" : "1",
 "description" : "Uses",
 "interactionStyle" : "Synchronous"
 }, {
 "tags" : "Relationship,Synchronous",
 "id" : "6",
 "sourceId" : "2",
 "destinationId" : "4",
 "description" : "Uses",
 "technology" : "HTTP",
 "interactionStyle" : "Synchronous"
 }, {
 "tags" : "Relationship,Synchronous",
 "id" : "28",
 "sourceId" : "2",
 "destinationId" : "8",
 "description" : "Uses",
 "technology" : "HTTP",
 "interactionStyle" : "Synchronous"
 }, {

Diagrams are maps
that help software developers navigate a large and/or complex codebase

You can create
many visualisations
from a single model

Integration with your
build process keeps
models up to date

Once you have a model
of your software system,

you can explore it

Summary

The 1990’s called and
they want their tools back!
It’s 2016 and we shouldn’t be using a general purpose

diagramming tool for software architecture

Abstractions first,
notation second

Ensure that your team has a ubiquitous
language to describe software architecture

Thank you!
simon.brown@codingthearchitecture.com

@simonbrown

